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An X-ray study of deformed ruthenium was performed. Fourier and integral-breadth analysis of line 
profiles indicated absence of lattice distortion and also stacking faults. The average domain sizes found 
by using the two methods were 652 and 926/~ respectively. The absence of distortion and faulting has 
been used to determine the domain size distribution function. 

Introduction 

A detailed study of X-ray line broadening in filings of 
magnesium, titanium, zirconium and hafnium (Lele & 
Anantharaman, 1967a, b) was recently made by us 
under a program of study of hexagonal close-packed 
(h.c.p.) metals. We present here the results of an X-ray 
study of deformed ruthenium. 

As is well known, it is not only possible to determine 
the average domain size but also to evaluate the size 
distribution function from a knowledge of the Fourier 
coefficients of the pure diffraction line profile (Bertaut, 
1949a, b; Kobe, 1960; Bienenstock, 1963; Smith & 
Simpson, 1965). In practice, however, domain size 
broadening is generally accompanied by distortion and 
fault broadening. The effects of distortion and faulting 
cannot be removed in a rigorous manner unless the 
strain-distribution function and the fault probabilities 
are known. Consequently, it is usually not possible to 
determine the domain-size distribution. In the present 
study of deformed ruthenium, the state of the cold- 
worked powder was such that no stacking faults could 
be detected and strains were also negligible. Hence an 
actual determination of the domain size could be at- 
tempted. 

Experimental procedure 

Ruthenium powder of high purity (> 99.9%) supplied 
by M/S Heraus (Germany) was used in the investiga- 
tion. Deformation of the powder was accomplished by 
grinding in a powder-driven pestle and mortar (made 
of corundum) for one hour. The powder was then 
pressed into a briquette in a steel die at a pressure of 
about 16 kg.mm -2 by means of an Amsler hydraulic 
press. X-ray line profiles were continuously recorded 
before and after annealing the briquette in vacuo 
('~ 10 -4 mm Hg) under identical conditions in a Philips 
diffractometer with filtered Cu Ke radiation at a tem- 
perature of about 30 °C. All the patterns were obtained 

lO with a scanning rate of-~ in 20 per minute using a 
time constant of 8 sec. 

Three reflexions, viz. 0(302, 10T1 and 1012, along with 
their second orders were recorded. The Kel peaks of 
the diffraction profiles of the cold-worked and an- 
nealed samples were located by an analytical method 

(Anantharaman & Christian, 1953) and the integral 
breadths B and b determined for both the cold-worked 
and annealed profiles. The pure diffraction breadth fl 
was found by using each of the following three rela- 
tions due to Scherrer (1920), Warren & Biscoe (1938) 
and Anantharaman & Christian (1956), respectively: 

fls = B - b ;  

flWB = (B 2 _  b2)1/2 ; 

fl.~c = B_bZ /B  . 

The first and second relations hold when all the profiles 
follow the Cauchy and Gaussian functions respectively, 
while the last relation gives results correct to within 
ten per cent when the pure diffraction profile is Cauchy, 
the instrumental profile Gaussian and the observed 
profile intermediate (Halder & Wagner, 1966). 

For Fourier analysis, the profiles were divided into 
200 equal intervals with the Kcq peak as the origin. 
The amplitudes measured at these intervals were used 
for evaluating the Fourier coefficients An + iBn of the 
pure diffraction line profile on a digital computer 
(Elliot 803) by the method due to Stokes (1948). The 
sine coefficients Bn were small enough to be neglected. 
For the determination of the average domain size, the 
cosine coefficients An were expressed as a function of 
a length t perpendicular to the diffracting planes in the 
crystal, t being related to the harmonic number n 
through t=nlal,  where lal is the sin 0 interval over 
which the profile is expressed as a Fourier series. 

Analysis of line profiles 

The analyses (Fourier as well as integral breadth) have 
been performed by assuming an absence of lattice 
strain as well as stacking faults. These assumptions, 
which will be justified later, simplify the calculations 
considerably. The average domain size values D and 
DB were found by using the following equations: 

laA_,  _ 1 

- \ d t  I t=0- -D' (1) 

2 
fl = D B-----co s -O " (2) 
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The domain size distribution function P(n) may be 
found from (Bertaut, 1949a, b; Bienenstock, 1963; 
Smith & Simpson, 1965) 

Pn A n+l - -  2A n + A n-1 = (dZA nldn z) 
= Ao-A1 (dAnldn)n=o " (3) 

However, owing to random fluctuations in the meas- 
ured intensity and also possible errors in the choice 
of the background (Young, Gerdes & Wilson, 1967), 
there are fluctuations in the Fourier coefficients as well, 
which may give rise to meaningless results if the coef- 
ficients are directly substituted in equation (3). This 
necessitates a 'smoothing', i.e. a removal of fluctua- 
tions in the Fourier coefficients. A reasonable way to 
do this is to fit a polynomial in n to the Fourier coef- 
ficients by the least-square technique. The degree of 
the polynomial is arbitrary to a great extent. From 
elementary considerations, it can be shown that the 
polynomial must be at least a fourth degree one. The 
highest degree possible is naturally equal to the number 
of the Fourier coefficients. We have limited ourselves 
below to a fourth degree polynomial, which represents 
the maximum permissible smoothing: 

A n = ao + aln -t- a2n 2 q- a3 n3 q- a4 n4 . 
By differentiation, we get 

(4) 

-(dAnldn)n:o= -al , (5) 

(d2A n/dn 2) = 2a2 + 6a3n + 12a4n z , (6) 

which on substitution in equation (3) yield 

2a2 + 6a3n + 12a4n 2 P(n) = (7) 
- -  a 1 

The parameters ai, i = 0  to 4 in equation (4) can be 
found by the usual least-square theory, the solution in 
matrix form being 

I a° I I S° S1 $2 $3 $4 l - l l  T° 1 al S1 82 83 84 85 T1 
a2 = $2 $3 $4 $5 $6 T2 
a3 83 84 $5 86 87 T3 
a4 84 85 86 87 88 T4 

14 14 

(8) 

where So= 15, S~= Z n i and T~= Z" niAn. We have 
n = 0  n=O 

found the domain size distribution by the above method 
for the direction perpendicular to the (10T1) planes. 

Results and discussion 

Average domain size and distribution function 
The domain size values as calculated from each of 

the available reflexions are given in Table 1. A com- 
parison of the domain size values for three directions, 
namely [0001], [1011], [1012], found by averaging the 
values for the two orders shows that the domain size 
is nearly isotropic and hence that there is no observable 
contribution to the broadening due to faulting. Sim- 
ilarly, a comparison of the average value of the domain 
sizes for the first order reflexions, namely 0002, 10].1 
and 10T2, and the average value for the second order 
reflexions, namely 0004, 2022 and 2024, shows that the 
domain sizes are independent of the order of the reflex- 
ion. The effect of strain is dependent on the order of 
the reflexion (Warren, 1959). Thus, had there been 
strains present in the lattice, we would have obtained 
low values of the domain size from the second order 
reflexions. This not being the case within experimental 
error limits, we consider it justifiable to conclude that 
there is no observable contribution to the broadening 
due to strains in the lattice. 

The values of the percentage mean deviation from 
the mean are nearly equal. However, this is lower for 
the domain size values found from the Scherrer (1920) 
and Anantharaman & Christian (1956) equations than 
for the Warren & Biscoe (1938) equation. This sup- 
ports the view that domain size profiles are closer to 
the Cauchy function in nature than to the Gaussian 
function (Warren, 1959). 

The domain size distribution for the 10]1 direction 
is given analytically by 

P (n) = 0.0907- 0.00299(n - 5.34) 2 . (9) 

The above equation represents a parabolic distribution 
function. The maximum permissible value of n accord- 
ing to equation (9) is 10.85. This represents a limitation 
in the domain size values which is unlikely to be true. 
It appears, therefore, that P(n) may not be represented 
accurately by equation (9) for values of n near to and 
greater than 10.85. Normally the area under the P(n) 
versus n curve must be unity; however, by integration 
of equation (9), it may be shown that 

I P(n)dn=0.66. 

hkil 0 
(°) 

0002 21-1 
10T1 22.0 
10i2 29.2 
0004 46.0 
2022 48.5 
20~4 77.1 

Mean value 
Percentage mean deviation from mean 

Table 1. Domain size values in deformed ruthenium 
B b fls DB s flAC DBAC 

( X 103 rad) ( × 103 rad) ( × 103 rad) (/~) ( x 103 rad) (~) 
2"79 1-71 1"08 1536 1"74 951 
3"01 1"83 1.18 1409 1"90 876 
2"93 1"75 1"18 1492 1"89 934 
4"11 2"92 1"19 1876 2"03 1095 
5"65 4-09 1-56 1491 2"69 865 

15" 1 ! 10" 18 4"93 1398 8"24 836 

1534 926 
7"5 7"2 

f lWB 

( × 103 rad) 
2.20 
2.39 
2"35 
2"88 
3"90 

11"16 

DB WB 
(A) 
751 
696 
750 
769 
597 
618 

697 
8.6 

D 
(A) 
735 
697 
640 
593 
622 
622 

652 
6.0 
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It is probable that the remaining fraction of columns 
has a greater number of cells than 10.85. 

A useful check on the distribution function may be 
obtained as follows: From equation (9), we can get 
values of the mean number, (n)  and the mean square 
number, (n 2) of cells per column, since 

(n)= t nP(n)dn / I P(n)dn, (10) 

(nZ)=lnzP(n)dn / IP(n)dn. (11) 

These give us the ratio 

Z =  -(-n-~ - [ I p(n)d n [ I P(n)d n (12) 

which is an absolute property of the shape of the dis- 
tribution function and does not depend on particular 
numerical values of (n)  and (n2). Evaluating the inte- 
grals in equations (10) and (11) by using equation (9) 
and substituting in equation (12), we get 

Z = 1.34. 

This value of Z may be checked against another value 
found from (Bertaut, 1949a, b) 

(n2~)- DA~C (13) 
x -  (n)2 D 

Substituting D~ c = 926 A and D = 652 A, we get 

Z = 1.42. 

The close agreement between the two values of Z ob- 
tained by using equations (12) and (13) suggests that 
the assumption of a parabolic distribution function, 
which is implicit in the method used, is justified. 

As pointed out earlier, the distribution function is 
not represented accurately by equation (9) for values 
of n near to and greater than 10.85. It is probable that 
the distribution function does not abruptly fall to zero 
at n =  10.85, but tails off gradually to zero as n in- 
creases. This would have the consequence that the 
values of the mean number, (n), and the mean squared 
number, (n2), of cells in a column found from equa- 
tions (10) and (11) would be lower than the actual 
values, which can be found from 

(n)= - l/al , (14) 
and 

(n2)= 1.42(n)2 = 1.42/a~. (15) 

The actual values confirm this expectation. Thus equa- 
tions (10) and (11) give the following values: 

(n )=5 .35  and (n2)=38.10 ,  

while from equations (14) and (15), we get 

(n )=9 .24  and (n2) =121-24. 

Stacking fault energy (S.F.E.) 
According to Seeger (1955), the difference in energy 

between the h.c.p, and the f.c.c, structures and the 
S.F.E. for transitional metals are determined by the 
bonding between next nearest neighbour atoms pro- 
vided by the d electrons. Following this argument, he 
predicts that ruthenium should have a low S.F.E. 
Tyson (1967) has recently put forward a hypothesis 
according to which h.c.p, materials with a low value 
of S.F.E. should favour basal slip as opposed to pris- 
matic slip. It therefore appears that ruthenium should 
deform by basal slip which, however, is not consistent 
with the actual observation of prismatic slip in this 
metal (Rhys, 1959). The non-observance of stacking 
faults in this work seems to support the view that 
ruthenium has a high S.F.E. There is, however, the 
possibility that stacking faults may not be produced 
by the process of grinding with a mortar and pestle 
as in the present work, since the latter does not lead 
to the same amount of cold work as the filing operation 
generally employed in such studies. 
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